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The Sasaki Hook is not a [Static] Implicative
Connective but Induces a Backward [in Time]
Dynamic One that Assigns Causes

Bob Coecke1,3 and Sonja Smets2

The Sasaki adjunction, which formally encodes the logicality that different authors
tried to attach to the Sasaki hook as a ‘quantum implicative connective,’ has a fun-
damental dynamic nature and encodes the so-called ‘causal duality’ (Coecke et al.,
2001) for the particular case of a quantum measurement with a projector as correspond-
ing self-adjoint operator. The action of the Sasaki hook (a →S −) for fixed antecedent
a assigns to some property “the weakest cause before the measurement of actuality
of that property after the measurement,” i.e., (a →S b) is the weakest property that
guarantees actuality of b after performing the measurement represented by the pro-
jector that has the ‘subspace a’ as eigenstates for eigenvalue 1, say, the measurement
that ‘tests’ a. The logicality attributable to quantum systems contains a fundamen-
tally dynamic ingredient: Causal duality actually provides a new dynamic interpre-
tation of orthomodularity. We also reconsider the status of the Sasaki hook within
‘dynamic (operational) quantum logic,’ what leads us to the claim made in the title
of this paper. The Sasaki adjunction has a physical significance in terms of causal
duality. The labeled dynamic hooks (forwardly and backwardly) that encode quantum
measurements, act on properties as (a1

ϕa→ a2) := (a1 →L (a →S a2)) and (a1
ϕa← a2) :=

((a →S a2) →L a1), taking values in the ‘disjunctive extension’ DI(L) of the prop-
erty lattice L , where a ∈ L is the tested property and (− →L −) is the Heyting im-
plication that lives on DI(L). Since these hooks (− ϕa→ −) and (− ϕa← −) extend to
DI(L) × DI(L) they constitute internal operations. The transition from either classical
or constructive/intuitionistic logic to quantum logic entails besides the introduction of
an additional unary connective ‘operational resolution’ (Coecke, 2002a) the shift from
a binary connective implication to a ternary connective where two of the arguments
refer to qualities of the system and the third, the new one, to an obtained outcome (in a
measurement).
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1. QUANTUM LOGICALITY

We claim that logical considerations on quantum behavior and as such, fur-
ther development of the research field, have been ‘corrupted’ by two features.
Once these two features are neutralized, the way towards an essentially dynamic
quantum logic (i.e., a unified logic of ‘changes’ both for classical and quan-
tum systems), or otherwise put, a true quantum process semantics, is opened.
Moreover, the solution to the second ‘corrupt feature’ indicates that the logical-
ity encoded in pure quantum theory is of a fundamental dynamic nature. Struc-
tures somewhat similar to those emerging in the context of categorical grammar
(Lambek, 1958), linear logic (Girard, 1987, 2000), action logic (Baltag, 1999)
and computation and concurrency (Abramsky, 1993; Milner, 1999) then naturally
emerge via a Kripke style approach for logical semantics applied to the operational
foundations of physics. The two features that obstructed true logicality are—
concerning the second, most non-quantum logicians have always agreed on its
weakness:

i. The Birkhoff and von Neumann (1936) ‘dilemma’: “Whereas logicians
have usually assumed that [the orthocomplementation] properties L71-
L73 of negation were the ones least able to withstand a critical analysis,
the study of mechanics points to the distributive identities L6 as the weakest
link in the algebra of logic.” This dilemma forced the search and attempted
identification of quantum logicality to proceed ‘orthogonal’ to intuitionistic
and derived developments in logic.

ii. ‘Implication’ via the Sasaki adjunction: The fact that the pointwise action
ϕ∗

a (−) of Hilbert space projectors on the subspace lattice, the quantum
analogue of the action of classical lattice projections (a ∧ −), has the pa-
rameterized action (a

S→ −) of the so-called Sasaki hook (− S→ −) as a
right adjoint. This Sasaki hook (as a binary operation) satisfies the minimal
implicative condition (a

S→ b) = 1 ⇐⇒ a ≤ b (Kalmbach, 1983) where
≤ naturally encodes physical consequence (Coecke et al., 2001a).4 How-
ever, any proof theoretic consideration (among other things) did turn out
to be impossible for a logical system with (− S→ −) as implication since
there cannot be a deduction theorem for it (Blok et al., 1984; Malinowski
1990).5 We explain all this in more detail in Section 3.

4 Recall that the adjointness of projection (a ∧ −) and implication (a → −) in classical and intuitionistic
logic exactly encodes the validity of modus ponens and deduction, in other words, the adjunction
(sometimes called the ‘implicative condition’) a ∧ x ≤ b ⇐⇒ x ≤ (a → b) is equivalent to a ∧ x ≤
b =⇒ x ≤ (a → b) together with a ∧ (a → b) ≤ b. By means of applying the latter, i.e., modus
ponens, given that x ≤ (a → b) we indeed obtain a ∧ x ≤ a ∧ (a → b) ≤ b. We come back to this
further in this paper.

5 In Hardegree (1975, 1979) and Herman et al. (1975) it is pointed out that the Sasaki hook also fails
to satisfy strong transitivity, weakening and contraposition.



The Sasaki Hook 1707

It turns out that an operational analysis of quantum logicality starting from
well-defined primitive notions rather than from formal pragmatism eliminates these
two features. Instead:

i. As shown in Coecke (2002a), the injective hull construction for meet-
semilattices (Bruns and Lakser, 1970; Horn and Kimura, 1971) realizes a
disjunctive extension of property lattices, the latter being the physical in-
carnation of meet-complete and conjunctive quantum logicality (and noth-
ing more!),6 in terms of a complete Heyting algebra that goes equipped
with an additional operation, ‘operational resolution’, which recaptures
the initial property lattice as its range, and this goes without any loss of
the (physically derivable) logical content of the initial lattice of properties.
In the case of an atomistic property lattice, the inclusion of the property
lattice in its distributive hull actually encodes the ‘state space – property
lattice duality’ (Coecke, 2002b).7 This construction will be recalled in the
fourth section of this paper.

ii. Propagation of physical properties is left adjoint to backward causal as-
signment (Coecke et al., 2001)—we provide a more intuitive presentation
of this result in the Section 5. Also in Section 5, we show that the Sasaki
adjunction exactly encodes this adjunction for the case of propagation
and backward causal assignment of a quantum measurement. The min-
imal implicative condition expresses in this perspective merely that the
image under projection of the trivial property 1 is exactly the property
on which we project, i.e., ϕ∗

a (1) = a. More important however, recalling
that adjointness of Sasaki hook and Sasaki projection for an ortholattice is
equivalent to the ortholattice being orthomodular, causal duality provides
actually a new interpretation of orthomodularity.

Moreover, as shown in Coecke (2002b) and Coecke et al. (2001b), when
combining the following features that result from the above:

i. Property lattices admit a canonical disjunctive extension giving rise to
an irredundant collection of meaningful propositions on properties with a
physically significant ordering,8

ii. A unary connective ‘operational resolution’ faithfully recaptures the phys-
ical properties within the collection of propositions on these properties as
its range, and,

6 For a demonstration of complete conjunctivity see Piron (1976) and Moore (1999). For the ‘and
nothing more!’ see Emch and Jauch (1965), Coecke (2002a) and Coecke et al. (2001a).

7 For a discussion of the categorical ‘state space–property lattice duality’ for atomistic orthocomple-
mented lattices, physically and mathematically, see Moore (1995).

8 For a clear distinction between the significance of ‘properties’ and ‘propositions on properties,’ we
initially refer to Coecke (2002a) and the rest of this paper. Briefly, from a philosophical perspective
one could say that properties are ontological, there where propositions on properties that are to be
situated at an epistemological meta-level.



1708 Coecke and Smets

iii. causal duality applies both to properties and to propositions on proper-
ties, respectively restricting physically admissible evolution, and encoding
preservation of propositional disjunction.

Then, a Kripke-style approach for logical semantics applied to the operational
foundations of physics yields a logical structure with for each possible physi-
cal ‘environment’ (e.g., a measurement apparatus, a free or imposed evolution,
interaction in the presence of another system, etc.) the following connectives:

i. two implications (− e→ −) and (− e← −) that extend the physical content
of propagation of (physical) properties and backward causal assignment,
and,

ii. two corresponding adjoint tensors (− ⊗e −) and (−e⊗−) of which one is
commutative and one is not.

This, since the Sasaki adjunction encodes causal duality, then establishes our claim
made in the title concerning the induced dynamic implications by the Sasaki hook.
In the ‘static limit’, i.e., ‘freezed dynamics’ with respect to some preferred refer-
ential frame for space-like properties, this structure yields an intuitionistic logic
equipped with the above mentioned operational resolution as an additional opera-
tion, and both the hooks (− e→ −) and (− e← −) collapse into the [static] Heyting
implication, and the tensors (− ⊗e −) and (−e⊗−) become binary conjunction.9

We also recall here the following spin-off from all the above (for details we refer
to corresponding cited papers):

i. A proof of linearity for deterministic evolution and for the Hilbert space
tensor product as a description of quantum compoundness (Faure et al.,
1995; Coecke, 2000).

ii. A generalized notion of linearity for indeterministic transitions that satu-
rates into ordinary linearity in the deterministic case (Coecke and Stubbe,
1999; Coecke et al., 2001).

iii. A counter example to van Benthem’s (1991, 1994) ‘general dynamic logic
in terms of relational structures’: relational inverses have not necessarily
any physical significance for non-classical systems (Coecke et al., 2001b).

We will proceed as follows in this paper: Since we feel very strong about
the fact that quantum logicality cannot be treated as a purely mathematical matter
without specifying what one is actually talking about and that in every other case
it might even be better to abandon the word quantum (at least as a reference
to physics) in ones discourse, we provide in the next section an outline of the

9 The multiplicative fragments respectively provide a commutative quantale and dual non-commutative
quantale semantics (Coecke, 2002b; Coecke et al., 2001b; Smets, 2001).
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primitive physical notions from which we derive our formal notions.10 Next, we
recall some mathematical preliminaries required for this paper including Galois
adjoints, Heyting algebras and the Sasaki adjunction itself. In Section 4, besides
briefly recalling the results in Coecke (2002a), we discuss the Sasaki hook in
perspective of these, in particular we argue that any true implicative connective
on the lattice of properties of a quantum system has to be external and as such
cannot be the Sasaki hook. In the fifth section, besides explaining causal duality
and as such, the true significance of the Sasaki adjunction, we introduce ‘dynamic
causal relations’ which express the intuitive contents of the Sasaki adjunction in an
alternative way. These relations form the core of our approach in the sixth section
where the formal content of the Sasaki adjunction will be implemented in the
framework of Dynamic (Operational) Quantum Logic (DOQL)—see also Coecke
(2002b), Coecke et al. (2001b) and Smets (2001). Our analysis in this paper ends
with an overview of the dynamic implications (− ϕa→ −) and (− ϕa← −) which we
can deduce from the Sasaki adjunction. Finally, Section 7 points to the possible
impact of our approach on the field of quantum logic and opens new perspectives
to be elaborated in the future.

2. WHAT QUANTUM LOGICALITY CAN BE ABOUT

We claim that it makes no sense to discuss quantum logicality without speci-
fying what the elements in the considered lattice physically stand for. Indeed, non-
sense arguments, as for example indicated in Foulis and Randall (1984) and Piziak
(1986), emerge due to conceptual mixup.11 See also Smets (2001 § 6) for a more
general survey on misunderstandings and misconceptions on physical logicality. To
situate our perspective clearly we will recall here two major (well-defined) perspec-
tives which are, though essentially different respectively being ontological (Jauch
and Piron, 1969; Piron, 1976) and empirical (Foulis and Randall, 1972; Randall and
Foulis, 1973), not at all exclusive (Foulis et al., 1983), but which give rise to differ-
ent mathematical structures —see for example Coecke et al. (2000) for an overview
and Moore (1999) and Wilce (2000) for recent surveys respectively on the Jauch–
Piron and the Foulis–Randall perspective. How can one theoretically approach the
behavior of a physical system? As philosophers know very well (to whom physicist,

10 Obviously, there is something to say for the use of the word quantum referring to a domain of
mathematics that studies structures inspired on particular formal features of the quantum mechanical
formalism such as non-distributivity, but this still remains pure mathematics in absence of an outline
of the primitive physical notions from which one derives formal notions such as order, bounds and in
particular of the significance of elements in any considered set on which one defines these relations
and connectives. In this context, for a recent survey of general operational quantum logic we refer
to Coecke et al. (2000).

11 We rather not refer to the papers containing mathematical/conceptual flaws but give credit to those
who tackled them.
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however, in general don’t pay much attention)12 there are different answers to this
question. As such, any approach requires a subtle specification of what the primitive
notions are one starts from. In Foulis and Randall (1972) and Randall and Foulis
(1973) one considers a notion to which we prefer to refer to as “observed events that
reflect something about the system’s qualities,” where in Jauch and Piron (1969)
and Piron (1976) one considers “qualities of the system that cause certain events to
occur,” depending on the particular environment (e.g., presence of a measurement
device). As we know from quantum mechanics, the state of the system in general
doesn’t determine the outcome of a measurement, and, an event provoked by a
measurement actually changes the system’s qualities. As such, it comes as no sur-
prise that these perspectives yield different mathematical structures. To a certain
extend one could say that both in the Jauch–Piron and Foulis–Randall perspec-
tive, we are interested in how the system interacts with its environment, though in
the first case from the ‘system’s perspective’ where in the second case we rather
consider the ‘environments perspective,’ including the physicist that effectuates
the experiments, or in other words, an endo- versus an exo-perspective—see also
Coecke (2002b) for a discussion on this matter, slightly deviating from the original
Jauch–Piron approach allowing some additional flexibility in view of actual appli-
cations. Obviously, since the Foulis–Randall perspective is an exo-perspective, the
measurements are made explicit within the formalism. Their formalism is indeed
essentially about how the system’s behavior is reflected through measurements,
without specifying the behavior itself. In the Jauch–Piron perspective, where we
focus on the system’s behavior itself this is a somewhat more subtle matter. Since
it adopts an endo-perspective, the measurement is not a priori part of the ‘universe
of discourse.’ Therefore it will be incorporated in a conditional way, explicitly as
“a system in a particular realization p, i.e., state, possesses a quality a if it is the
case that: whenever it (in realization p) is within environment ea then it causes
phenomenon αa to happen” and it is by this statement that we identify a particular
quality of the system13 —this explicit consideration of the environment (or context),

12 See for example Rovelli (1999) who backs us up on this: “I am convinced of the reciprocal usefulness
of a dialog between physics and philosophy (Rovelli, 1997). This dialog has played a major role
during the other periods in which science faced foundational problems. In my opinion, most physicists
underestimate the effect of their own epistemological prejudices on their research [. . .] On the one
hand, a more acute philosophical awareness would greatly help the physicists engaged in fundamental
research: Newton, Heisenberg and Einstein could not have done what they have done if they were
not nurtured by (good or bad) philosophy.”

13 Note here also that “whenever the system is within environment ea then it causes phenomenon αa

to happen” corresponds with Piron’s “whenever a definite experimental project is effectuated, we
obtain a positive outcome with certainty” (Piron, 1976; Moore, 1999) where the definite experimental
project includes both a physical procedure, say placing the system within the environment ea , and
specification of what is a positive answer to this procedure, say phenomenon αa happens. By referring
to a causal connection, we aim to avoid the confusion raised by use of the notion ‘certainty’ in
Piron’s formulation. One could also more naively say that Piron’s formulation is an active one (from
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even in the system’s endo-perspective, is what gives the operational flavor to this
approach.14

Before we continue, let us first recall some basic order theoretical notions. A
complete lattice is a bounded partially ordered set (L , ≤, 0, 1) which is such that
every subset A ⊆ L has a greatest lower bound or meet

∧
A. It then follows that

every subset A ⊆ L also has a smallest upper bound or join
∨

A via Birkhoff’s
theorem: ∨

A =
∧

{b ∈ L|∀a ∈ A : b ≥ a}. (1)

If the bounded poset (L , ≤, 0, 1) only admits finite greatest lower bounds and fi-
nite least upper bounds, we call it a lattice. In case it has only finite greatest lower
bounds and not necessarily least upper bounds we call it a meet-semilattice. A first
main example of a complete lattice is the lattice LH of closed subspaces of a Hilbert
space H, ordered by inclusion, or, isomorphically, the lattice of orthogonal pro-
jectors on this Hilbert space, ordered via PA ≤ PB ⇔ PB ◦ PA = PA ◦ PB = PA,
i.e., if and only if we have A ⊆ B for the corresponding subspaces (Dunford and
Schwartz, 1957 § VI.3). In the closed subspace perspective meets correspond to
intersection and joins to closed linear span. In the projector perspective it is harder
to grasp the operations meets and join, since they only can be expressed in a sim-
ple tangible way in case of commuting projectors (Dunford and Schwartz, 1957 §
VI.3). A second example is the powerset P(X ) of any set X , i.e., the set of subsets
of this set, ordered again by inclusion and meets and joins are respectively inter-
section and union. Orthomodular lattices generalize these two cases of the Hilbert
space projection lattice and the powerset of a set. Recall here that an orthomodu-
lar lattice is a lattice that goes equipped with an orthocomplementation′ : L → L ,
defined by a ≤ b ⇒ b′ ≤ a′, a ∧ a′ = 0, a ∨ a′ = 1 and a′′ = a, and which is
such that a ≤ b implies a ∨ (a′ ∧ b) = b. Alternative characterizations of ortho-
modularity can be found in Section 3 of this paper. One verifies that every mod-
ular ortholattice is also an orthomodular lattice, and for that reason one refers
to the additional property an orthomodular lattice has compared with an ortho-
lattice as weak modularity.15 For ortholattices, we have as such the following

a physicist’s perspective) where our’s is a passive one. Again, by the passive formulation we avoid
any connotation with some role that is in many interpretations of quantum theory ascribed to the
so-called ‘observer.’

14 Note that operationalism has here nothing to do with instrumentalism. In Piron’s formulation the
tendency towards an instrumentalist interpretation is, however, a bit stronger due to the explicit
presence of ‘definite experimental projects’. By considering general environments instead of specific
physical procedures, we hope to avoid some confusion and eliminate the link to P. W. Bridgman’s
operationalism since in our case, physical qualities have an extension in reality and are not by means
of definitions reducible to sets of procedures—see Smets (2001§ 1).

15 You have reason to be confused here. However, an orthomodular lattice is in general not modular.
Clearly a case of bad terminology, due to some formal confusion at the early development of the
subject, something what most probably did not contribute to its general appreciation.
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hierarchy Distributive =⇒ Modular =⇒ Weakly Modular, or, in terms of ob-
jects, BoolAlg ⊂ MOL ⊂ OML. We refer to Bruns and Harding (2000) for a
recent survey on algebraic aspects of this matter. Finally recall that both examples
considered above are examples of so-called atomistic lattices respectively hav-
ing the one-dimensional subspaces �H and the singletons {{x}|x ∈ X} as atoms,
explicitly,

∀A ∈ LH : A =
∨
H

{ray(ψ) ∈ �H| ray(ψ) ⊆ A}

and ∀T ∈ P(X ) : T =
⋃

{{x}|x ∈ T }, (2)

thus satisfying the general atomisticity condition ∀a ∈ L : a = ∨{p ∈ �|p ≤ a},
where � denotes the atoms of L , i.e., p ∈ � if and only if ∀a ∈ L : a ≤ p ⇒
a ∈ {0, p}.

Now, coming back to the two perspectives on logicality mentioned above, we
will “initially” take the endo-perspective, and look at the true ‘proper’ qualities
of the system, to which we will refer briefly as properties. Later in the paper, the
exo-perspective will enter naturally when defining logical hooks. The resulting
structure will as such incorporate both! So in this paper a property is definitely
not to be envisioned merely as an observed quality/quantity, since that would
be an event of the Foulis–Randall perspective. We as such do assume a form of
realism in the sense that properties do exist in the absence of a measurement.16

For example, in the dark, one could attribute the property referred to as ‘red’ to
an object which is such that, “whenever there is a white light source brought in its
environment that shines on it, it radiates red light.” Note here that we implicitly
assume a system to be well-specified. Depending on its possible realization p
(say state), the system possesses different properties L p, referred to as the actual
properties for that particular realization p. The collection of all properties that the
system can possess within the boundaries of its domain of specification, all the
corresponding realizations themselves being denoted as � (any other realization
will be considered as destruction of the system), will be denoted by L . This set
L goes naturally equipped with a partial order in terms of “actuality of a ∈ L
implies actuality of b ∈ L ,” i.e., for any (fixed) state we have that: if it is the
case that “whenever it (. . .) is in environment ea then it causes phenomenon αa

to happen,” then this implies that “whenever it (. . .) is in environment eb then it
causes phenomenon αb to happen.” Denoting “a is actual in state p” as p ≺ a this
formally becomes

(a ≤ b) ⇐⇒ (∀p)(p ≺ a ⇒ p ≺ b). (3)

16 Reality is obviously in no way to be understood as synonym for ‘locality and non-contextuality’
as it is sometimes the case in some (from a philosophical perspective) slightly naive discourses on
philosophy of physics.
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Moreover, this poset is closed under ‘conjunctions’
∧

A of properties A ⊆ L
where actuality of

∧
A stands for “any a ∈ A is actual,” what actually means

that, for each a ∈ A, whenever the system (. . .) is within environment ea then it
causes phenomenon αa to happen.17 So we consider here a not fully specified en-
vironment in order to establish, slightly abusively, a disjunction of environments
{ea}a∈A (and corresponding phenomena {αa}a∈A).18 The feature that distinguishes
quantum systems from classical systems is the fact that we cannot define a dis-
junction of a collection A in this way. Given A ⊆ L , the statement “some a ∈ A
is actual” would require a simultaneity, or again slightly abusively, a conjunction
of environments what conflicts with quantum theory where we have incompati-
bility of measurements corresponding to non-commuting self-adjoint operators.
The conjunction

∧
defined above provides L with a complete lattice structure,

where, as already mentioned, the corresponding joins have not necessarily a dis-
junctive significance.19 In particular can there be properties b ∈ L that do not
imply that some a ∈ A is actual but that do imply the join

∨
A ∈ L to be ac-

tual, the so-called superposition principle of quantum theory—see Aerts (1981)
and Coecke (2002a) for a rigorous discussion on this matter. Let us stress that at
this point, as argued in Coecke et al. (2001a), the full physically derivable logi-
cal content that emerges from our operational setting consists of a consequence
relation20 �⊆ P(L) × L , that extends the lattice ordering ≤⊆ L × L exploiting
conjunctivity, i.e.,

∀a ∈ A : “a is actual” ⇐⇒ “
∧

A is actual, ” (4)

since this allows to transcribe the set {“a is actual”| a ∈ A} as “
∧

A is actual” it

17 Note here that contrary to a Tarskian perspective where one abstracts over the true sense of meets,
we give a particular operational significance to it. Conjunctivity is in a sense “conjunctivity with
respect to actuality,” i.e., with respect to “causing phenomena αa for a ∈ A to happen whenever
(. . .).” See for example Girard, Lafont and Taylor (1989) for a survey of some similar operational
considerations on connectives in computation and proof theory, where one focuses in particular on
the ‘dynamics’ underlying proofs and programs.

18 Or, in Piron’s terms “choose any a ∈ A and place the system in ea ,” i.e., a choice of environment.
Again, in order to avoid any cognitive connotation, we prefer to avoid the word ‘choice’ (although,
we don’t see any a priori problem in its use).

19 ‘Disjunctive’ to be seen again in terms of “disjunctive with respect to actuality.”
20 For the sake of the argument, we initially introduce here a Tarskian notion of consequence relation,

i.e., following Tarski (1936, 1956). As such it can be seen as a binary relation on sets of formulas
which satisfies reflexivity, monotonicity and transitivity. Later on we will extend this notion of
consequence relation to allow multiple conclusions—see eq. (23)—following the ideas of D. Scott.
Note, however, that in contemporary literature this type of consequence relation is often replaced
by a ‘weaker one’ in the sense that substructural logicians prefer to work with multisets and/or
non-monotonic logicians drop the monotonicity condition—for more details on this matter we refer
to Avron (1994).
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justifies setting 21

a, . . . (a ∈ A) � b ⇐⇒
∧

A � b ⇐⇒
∧

A ≤ b. (5)

We can introduce a (semantic) satisfaction relation |=⊆ � × L , exactly being the
actuality relation ≺ between states and properties—we prefer to have this double
use of notation ≺ and |= to stress whether we are either talking about the physical
content or the derived logicality. As such satisfaction and consequence are for
single assumptions related by

a � b ⇐⇒ (∀p)(p |= a ⇒ p |= b) (6)

and thus in general we have that a, . . . (a ∈ A) � b ⇐⇒ (∀p)((∀a ∈ A : p |=
a) ⇒ p |= b). For transparency of the argument below, we essentially consider
single properties as arguments. The (hypothetical!) existence of some implication
connective (− → −) : L × L → L would at least require that it satisfies the so-
called ‘minimal implicative condition’, for single assumptions being a � b ⇐⇒�
(a → b), such that it extends the physically derivable implication relation encoded
as the lattice ordering, what transcribes in lattice and state terms respectively as

a ≤ b ⇐⇒ (a → b) = 1 and ∀p ∈ � : (p ≺ a ⇒ p ≺ b)

⇐⇒ ∀p ∈ � : p ≺ (a → b). (7)

However, validity of deduction moreover transcribes as (sensu Gentzen’s sequent
calculus) {a, c} � b ⇒ c � (a → b), or exploiting conjunctivity, a ∧ c � b ⇒ c �
(a → b), what transcribes in lattice terms as

a ∧ c ≤ b =⇒ c ≤ (a → b). (8)

Note here that the minimal implicative condition is actually a weakened form of
the deduction theorem. Validity of both modus ponens c � (a → b) ⇒ {c, a} � b
assures the converse implication, i.e.,

a ∧ c ≤ b ⇐= c ≤ (a → b). (9)

We will come back to this point in the next section after recalling adjointness.

3. SASAKI ADJUNCTION

We recall some basic features of Galois adjoints. A more detailed survey of
Galois adjoints can be found in Erné et al. (1993) and for Galois adjoints in a

21 One could say that the notation a, . . . (a ∈ A) for representing actuality of each member in A, i.e.,
∀a ∈ A : “a is actual” could be simplified by writing down A, since in general in sequent calculus a
list of assumptions on the left of � always has to be interpreted conjunctively, i.e., as identifiable with
the meet. However, further we will consider collections A ⊆ L in terms of ∃a ∈ A : “a is actual”
and they will also appear on the left of � since we will consider them as primitive propositions. The
notion a, . . . (a ∈ A) is as such required to avoid confusion.
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more physical perspective we refer to Coecke and Moore (2000). A pair of maps
f ∗ : L → M and f∗ : M → L between posets L and M is Galois adjoint, denoted
by f ∗ � f∗, if and only if

f ∗(a) ≤ b ⇔ a ≤ f∗(b). (10)

Stressing the mathematical importance of adjoints, we respectively quote the
co-father of category theory S. Mac Lane and logician R. Goldblatt (Goldblatt,
1984 p. 438):

“. . . adjoints occur almost everywhere in many branches of mathematics. . . . a systematic
use of all these adjunctions illuminates and clarifies these subjects.”

“The isolation and explication of the notion of adjointness is perhaps the most profound
contribution that category theory has made to the history of general mathematical ideas.”

One could even say that where in the beginning days of category theory, the claim
was made that it are the functors and natural transformations that constitute the
core of category theory rather than the categories themselves, that it are actually the
adjunctions that provide the true power. Coming back to eq.(10), in the case that f ∗

and f∗ are inverse, and thus L and M isomorphic, the above inequalities saturate in
equalities. As we show below, the notion of Galois adjoint retains some essential
uniqueness properties of inverses. Whenever f ∗ � f∗ then f ∗ preserves all existing
joins and f∗ all existing meets. This means that for a Galois adjoint pair between
complete lattices, one of these maps preserves all meets and the other preserves
all joins. Conversely, for L and M complete lattices, any meet preserving map f∗ :
M → L has a unique join preserving left Galois adjoint and any join preserving
map f ∗ : L → M a unique meet preserving right Galois adjoint, respectively,

f ∗ : a �→
∧

{b ∈ M |a ≤ f∗(b)} f∗ : b �→
∨

{a ∈ L| f ∗(a) ≤ b}. (11)

Thus, it follows that there is a one-to-one correspondence between the join preserv-
ing maps, between complete lattices and the meet preserving maps in the opposite
direction, this so-called ‘duality’ being established by Galois adjunction. One also
verifies that eq.(10) is equivalent to

∀a ∈ L : a ≤ f∗( f ∗(a)) and ∀b ∈ M : f ∗( f∗(b)) ≤ b. (12)

Considering pointwise ordering of maps, i.e., for f, g : L → M, f ≤ g ⇔ ∀a ∈
L : f (a) ≤ g(a) we can write the above as idL ≤ f∗ ◦ f ∗ and f ∗ ◦ f∗ ≤ idM

where idL and idM are the respective identities on L and M . Now, coming back
to eq.(8) and (9) of the previous section one sees that they define, when both of
them are valid, an adjunction (a ∧ −) � (a → −) for all a ∈ L . This particular
property, i.e., the existence of a hook that acts as a right adjoint to the parameterized
action of the meet, actually defines a Heyting algebra, a type of lattice to which
we turn our attention now.
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Let us recall some features of Heyting algebras—for a recent survey see for
example Borceux (1994). A Heyting algebra is a lattice (H, ∧, ∨) equipped with an
additional binary operation (− → −) : H × H → H that satisfies a ∧ b ≤ c ⇔
a ≤ (b → c), i.e., after exchanging a and b and applying commutativity of (− ∧
−), the action of the meet is indeed left adjoint to the action of the hook, explicitly
we have (a ∧ −) � (a → −) for all a ∈ H . As such, a complete Heyting algebra
encodes those lattices in which we encode validity of modus ponens and deduction
in a semantical way. Also following from this adjointness, in any Heyting algebra
(a ∧ −) preserves existing joins, explicitly, a ∧ (b ∨ b′) = (a ∧ b) ∨ (a ∧ b′), so it
turns out that a Heyting algebra is always distributive . In fact, any Boolean algebra,
e.g., P(X ) for any set, turns out to be a Heyting algebra with (a → b) = ca ∨ b,
where c denotes complementation, (a → b) then being logically interpretable as
“(not a) or b.” A so-called pseudo-complement can be defined on any Heyting
algebra as ¬(−) : H → H : a �→ (a → 0) given a lower bound 0 of H . It then,
however, turns out that contrary to a Boolean algebra we in general do not have
that ¬a ∨ a = 1 given an upper bound 1 of H , what justifies the notion of pseudo-
complement. In this paper we will only consider complete Heyting algebras, where
a Heyting algebra is complete if and only if the underlying lattice is complete. Now,
since (a ∧ −) preserves the joins of all subsets of a complete Heyting algebra H , we
obtain a stronger form of distributivity namely a ∧ (

∨
B) = ∨

b∈B(a ∧ b). In fact,
this complete distributivity now fully determines the complete Heyting algebra
structure in the sense that for all a ∈ H the map (a ∧ −) : H → H preserves
all joins so it has a unique right adjoint (a → −) : H → H . So complete Heyting
algebras are complete lattices where the join of all subsets is completely distributive
over binary meets. We will now present an example of a complete Heyting algebra
which is in general not a Boolean algebra. Let L be any poset and set ↓a := {b ∈
L|b ≤ a} for a ∈ L and introduce a downset or order ideal as any set of the form
↓ [A] := {b ∈ L|∃a ∈ A : b ≤ a} = ⋃

a∈A ↓a with ∅ #= A ⊆ L , i.e., I is an order
ideal if and only if I #= ∅ and a ≤ b ∈ I implies a ∈ I . Order ideals of the form
↓a for a ∈ L are called principal ideals. It then turns out that the collection of
non-empty downsets I(L) := {↓ [A]|∅ #= A ⊆ L} constitutes a complete Heyting
algebra. Indeed, since unions and intersections of downsets are again downsets,
I(L) is closed under unions and intersections from which it follows that they
respectively constitute the join and meet in I(L). Distributivity of I(L) is as such
inherited from that of P(L). Using eq.(11) we can now compute the corresponding
Heyting algebra hook

(B →I(L) C) =
⋃

{A ∈ I(L)|A ∩ B ⊆ C} = {a ∈ L|∀b ∈ B : a ∧ b ∈ C}.
(13)

As pseudo-complement we obtain ¬B = (B →I(L) 0I(L)) = {a ∈ L|∀b ∈ B : a ∧
b = 0L}. So in general we indeed do not have B

⋃ ¬(B) = 1I(L). The most sim-
ple example of a Heyting algebra which is not Boolean is a three element chain
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{0 < a < 1}. In particular are the downsets of any chain isomorphic to the chain it-
self, establishing the claim that downsets in general don’t constitute a Boolean alge-
bra. Another example are the open sets of a topological space ordered by inclusion.

Recall that for the lattice of closed subspaces of a Hilbert space the Sasaki
projection

ϕ∗
A : LH → LH : B �→ A ∩ (A⊥ ∨H B) (14)

exactly encodes the action of the orthogonal projector PA that projects on the
subspace A, so in particular we have for the action on rays that

ϕ∗
A(ray(ψ)) = A ∩ (A⊥ ∨H ray(ψ)) = ray(PA(ψ)) (15)

where we identify ray(PA(ψ)) in case that ψ ⊥ A with the zero-dimensional sub-
space. Moreover, for an arbitrary orthomodular lattice L , setting

ϕ∗
a : L → L : b �→ a ∧ (a′ ∨ b) and ϕa,∗ : L → L : b �→ a′ ∨ (a ∧ b),

(16)
for all a ∈ L , we have ϕ∗

a � ϕa,∗. Indeed, if a ∧ (a′ ∨ b) ≤ c then a′ ∨ (a ∧ (a ∧
(a′ ∨ b))) ≤ a′ ∨ (a ∧ c) where b ≤ a′ ∨ b = a′ ∨ (a ∧ (a′ ∨ b)) since a′ ≤ a′ ∨
b, and analogously one proves the converse. This adjunction actually embodies

why the Sasaki hook (− S→ ·) := ϕ(−),∗(·) has been interpreted as an implication,
since ϕ∗

a coincides with (a ∧ −) : L → L , the classical projections, in the case
that L is distributive since then a ∧ (a′ ∨ b) = (a ∧ a′) ∨ (a ∧ b) = 1 ∨ (a ∧ b) =
a ∧ b.22 In particular do we as such retain an adjunction of projection action and
hook, mimicking the one that one has for complete Heyting algebras that embodies
the validity of modus ponens and the kind of deduction theorem obtained by
combining eq.(8) and (9). However, this in no way implies that all tools available
in classical/intuitionistic logic will still be valid within this setting. Let us briefly
outline how the minimal implicative condition and the adjointness for the Sasaki
hook relate, both in the cases that we abstract over the explicit formulation of the
Sasaki hook and the Sasaki projection, i.e., the case of a general abstract adjoint
implication (Hardegree, 1979, 1981) on a bounded poset, and the case of them
being explicitly defined on an ortholattice. We follow Coecke et al. (2001c). Let
J(L) be the collection of isotone maps on a bounded poset L that admit a right
adjoint. An adjoint implication is then defined by a map ϕ̃∗ : L → J(L) : a �→ ϕ̃∗

a
that satisfies ϕ̃∗

a (1) = a. The parameterized right adjoint (− ϕ̃→ −) : L × L → L ,
i.e., ϕ̃∗

a � (a
ϕ̃→ −) := ϕ̃a,∗, is then to what we refer as the adjoint implication. The

22 This view is obviously motivated by the fact that where for a Heyting algebra the actions {(a ∧ −)|a ∈
L} can be envisioned as projections on a, for orthomodular lattices the Sasaki projections {ϕ∗

a |a ∈ L}
are the closed orthogonal projections in the Baer ∗-semigroup of L-hemimorphisms (Foulis 1960)
which, as mentioned above, coincide in the case of the subspace lattice of a Hilbert space with the
action of the closed projectors of the underlying Hilbert space. We also refer to Coecke and Smets
(2000) for complementary details on this matter.
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condition ϕ̃∗
a (1) = a implies the minimal implicative condition via explicitation of

the adjunction, i.e., ϕ̃∗
a (1) ≤ c ⇔ b ≤ (a

ϕ̃→ c), for b = 1. One could as such state
that because the Sasaki projections satisfy ϕ∗

a (1) = a, the Sasaki hook satisfies the
minimal implicative condition. For an ortholattice it turns out that adjointness of
the Sasaki hook and the Sasaki projection is equivalent to one side of the implicative
condition, namely (a

S→ x) = 1 ⇒ a ≤ x—notice that the other side is trivially
satisfied for ortholattices since a ≤ x implies a′ ∨ (a ∧ x) = a′ ∨ a = 1. From this
perspective one can say that the minimal implicative condition incarnates the fact
that the Sasaki hook arises as the right adjoint of Sasaki projections. Moreover,
these two alternative definitions are actually equivalent to the ortholattice being
orthomodular, and as such provide alternative characterizations of orthomodularity,
respectively one that can be written equationally, a rather logical one, and one in
terms of an adjunction.

Proposition 3.1. The following are equivalent for an ortholattice L:

i. L is orthomodular, i.e., a ≤ b implies a ∨ (a′ ∧ b) = b;

ii. For all a ∈ L we have (a
S→ x) = 1 ⇒ (or ⇔)a ≤ x;

iii. For all a ∈ L we have ϕ∗
a (−) � (a

S→ −).

By (i) ⇔ (ii), one has a statement concerning logicality attributed to the
Sasaki hook in terms of the minimal implicative condition, or equivalently, the
Sasaki adjunction incarnates the utterance ‘orthomodular logic’.23 As is reflected
in the title and introduction of this paper, we do not follow this line of thought!
For us, it is (i) ⇔ (iii) that will provide a new interpretation of orthomodularity in
terms of causal duality.

4. TRUE IMPLICATIVE QUANTUM LOGICALITY

In this section we essentially follow Coecke (2002a). As discussed in Sec-
tion 2, the lattice of properties in general does not encode arbitrary disjunction,
since otherwise, they would constitute the joins and as such all joins would be
disjunctions, what is in general not the case. Let us first analyze what happens in
a (dichotomic) perfect quantum measurement.24 Consider a (dichotomic) perfect
quantum measurement of the property a ∈ L and correspondingly, its orthocom-
plement a′. Assuming that a property b ∈ L is actual before the measurement, it
follows, since the Sasaki projections encode projectors on subspaces, that after
the measurement either ϕ∗

a (b) or ϕ∗
a′ (b) is actual. Indeed, referring back to eq. (14)

23 See also Moore (1993) on this matter.
24 For the introduction of the respective concepts of (dichotomic) ideal measurement and (dichotomic)

measurement of the first kind, and, conjointly, a (dichotomic) perfect measurement, we refer to Pauli
(1958) and Piron (1976).
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and (15), and recalling that dichotomic measurements are in quantum theory rep-
resented by self-adjoint operators with a binary spectrum, the projectors on the
corresponding (mutually orthogonal) eigenspaces are then exactly encoded by ϕ∗

A
and ϕ∗

A⊥ , where A and A⊥ are the corresponding eigenspaces. Writing “we ob-
tain either ϕ∗

A(ray(ψ)) or ϕ∗
A⊥ (ray(ψ)) as outcome state” then corresponds to an

abstraction over the corresponding probabilistic weights of the two outcomes in
a dichotomic measurement, focusing on the fact that whenever we are not in an
eigenstate, there is an uncertainty on the outcome. Consequently, there is also
an uncertainty on the corresponding ‘change of state’ (according to the projec-
tion postulate), and as such, an uncertainty on the corresponding ‘change of actual
properties.’ We refer to this logical feature of quantum measurements as the ‘emer-
gence of disjunction in quantum measurements.’ Writing this in a more formal,
though intuitive way using a consequence ‘symbol’ we obtain:

“b actual” �perf. meas. of{a,a′} “ϕ∗
a (b) actual” or “ϕ∗

a′ (b) actual” (17)

or, when assuming the existence of an appropriate implicative connective
−→perf. meas. of{a,a′} that satisfies the corresponding minimal implicative condition
this becomes via the corresponding weakened form of the deduction theorem:

“b actual” −→perf. meas. of {a,a′} “ϕ∗
a (b) actual” or “ϕ∗

a′ (b) actual.” (18)

Unfortunately, “ϕ∗
a (b) actual” or “ϕ∗

a′ (b) actual,” i.e., “a member of the pair {ϕ∗
a (b),

ϕ∗
a′ (b)} is actual,” is not encoded in the lattice of properties of a quantum sys-

tem as an element since for example, taking b = 1, we have ϕ∗
a (1) ∨ ϕ∗

a′ (1) = 1
independent on a though the possible states the system can have—given that
“ϕ∗

a (b) actual” or “ϕ∗
a′ (b) actual” — definitely depend on a. Thus, it would make

sense to have logical propositions that express disjunctions of properties since they
emerge in quantum processes, in the endo-perspective. The question then arises
whether we can extend L with propositions of the type “ϕ∗

a (b) actual” or “ϕ∗
a′ (b)

actual”, or equivalently, “a member of {ϕ∗
a (b), ϕ∗

a′ (b)} is actual,” without loosing
the logicality encoded in the initial lattice of properties, i.e., the lattice order, and
whether this can be done in a non-redundant, canonical or even mathematically
universal way.25

A first candidate for encoding disjunctions would be the powerset P(L). How-
ever, if a ≤ b we do not have {a} ⊆ {b} so we do not preserve the initial logicality,
or, otherwise stated, if a < b then the propositions {a} and {a, b} (‘read’ {a, b}
as: either a or b is actual) mean the same thing, since actuality of b is implied
by that of a . We can clearly overcome this problem by restricting to order ideals
I(L) := {↓ [A]|A ⊆ L} ⊂ P(L). However, we encounter a second problem. In case

25 Note that the fact that the or that we obtain in a perfect measurement is exclusive does not have
to be encoded explicitly since it is already captured by the orthocomplementation since we have
ϕ∗

a (b) ∧ ϕ∗
a′ (b) = 0 by a ∧ a′ = 0 such that “both ϕ∗

b and ϕ∗
b′ are actual” is excluded—0 indeed

encodes the ‘absurd.’
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the property lattice would be a complete Heyting algebra in which all joins encode
disjunctions, then A and {∨ A} again mean the same thing. As argued in Coecke
(2002a), this redundancy is then exactly eliminated by considering distributive ide-
als DI(L) (Bruns and Lakser, 1970), that is, order ideals, that are closed under joins
of distributive sets (abbreviated as distributive joins), i.e., if A ⊆ I ∈ DI(L) then∨

A ∈ I whenever we have ∀b ∈ L : b ∧ ∨
A = ∨{b ∧ a | a ∈ A}. For L atom-

istic and � ⊆ L , DI(L) ∼= P(�) which implies that DI(L) is a complete atomistic
Boolean algebra (Coecke, 2002a). We can moreover provide, from a mathematical
perspective, more rigorous reasoning which exhibits the canonical nature of this
construction. Consider the following definitions for A ⊆ L:

i.
∨

A is called disjunctive iff (“
∨

A is actual” ⇔ ∃a ∈ A : “a is actual”) ;26

ii. Superposition states for
∨

A are states for which “
∨

A is actual” while
“no a ∈ A is actual”;

iii. Superposition properties for
∨

A are properties of which the actuality
implies that “

∨
A is actual” (without being equivalent to

∨
A), and, that

can be actual while “no a ∈ A is actual.”

Extending the satisfaction relation encoding actuality by p |= A ⇐⇒ ∃a ∈
A : p |= a allows us to set

(∀p)
(

p |=
∨

A ⇔ p |= A
)

⇐⇒
∨

A is disjunctive (19)

(
p |=

∨
A and p #|= A

)
⇐⇒ p ∈ � is a superposition state of

∨
A, (20)

(
b�̇

∨
A and b #� A

)
⇐⇒ b ∈ L is a superposition property of

∨
A. (21)

where a�̇b means a � b but b #� a.

Proposition 4.1. If “existence of superposition states implies existence of super-
position properties” then∨

A disjunctive ⇐⇒
∨

A distributive. (22)

Proof: See Coecke (2002a). �

The necessity condition “existence of superposition states implies existence
of superposition properties” can be illustrated by means of the following example.
When considering the four element lattice {0 ≤ a, a′ ≤ 1} even then distributivity
and disjunctivity are not necessarily equivalent, for example in the case that � =
{p, q, r} and p ≺ a, q ≺ a′, r ≺ 1 and r #≺ a, a′—the superposition state r for

26 Compare this definition with the one of conjunctivity.
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a ∨ a′ has no corresponding superposition property. Note here that for the par-
ticular example of quantum theory the condition is trivially satisfied as it is the
case for any atomistic property lattice.27 Now, any complete lattice L has DI(L) of
distributive ideals as its distributive hull (Bruns and Lakser, 1970), providing the
construction with a (quasi-)universal property.28 Moreover, DI(L) itself always
proves to be a complete Heyting algebra and the inclusion preserves all meets
and existing distributive joins. Thus, DI(L) encodes all possible disjunctions of
properties, and moreover, it turns out that all DI(L)-meets are conjunctive and all
DI(L)-joins are disjunctive—note again that this is definitely not the case in the
powerset P(L) of a property lattice, since {a} ∩ {b} = ∅ whenever a #= b indepen-
dent of what a ∧ b is. This means that we can ‘extend’ the consequence relation
of eq. (5) to �⊆ P(DI(L)) × P(DI(L)) respectively in terms of consequence and
satisfaction as

A, . . . (A ∈ A) � B, . . . (B ∈ B) ⇐⇒
⋂

A �
∨

DI(L)

B ⇐⇒
⋂

A ⊆
∨

DI(L)

B,

(23)

A, . . . (A ∈ A) � B, . . . (B ∈ B) ⇐⇒ (∀p)((∀A ∈ A : p |= A)

⇒ (∃B ∈ B : p |= B)) (24)

where we recall that a ≤ b ⇔↓a ⊆↓b and as such ↓(∧
A
) = ⋂

a∈A ↓a encodes
the properties within this set of propositions on properties—A ⊆ L is here to be
seen as just a set of properies without the disjunctive connotation of the distributive
ideals in DI(L) . As demonstrated in Coecke (2002a) it follows from all this that
the object equivalence between:

i. complete lattices, and,
ii. complete Heyting algebras equipped with a distributive closure, i.e., it

preserves distributive sets,

encodes a disjunctive representation for property lattices, where we, DI(L) being
a complete Heyting algebra, do have a Heyting hook

(− →DI(L) −) : DI(L) × DI(L) → DI(L) : (B, C)

�→
∨

DI(L)

{A ∈ DI(L)|A ∩ B ⊆ C}, (25)

27 Whenever this condition is satisfied one can also construct a disjunctive extension, which is obviously
not anymore the distributive extension, but something ‘in between’ the distributive extension and the
downset completion where corresponding inclusions are injective order embeddings that preserve
all meets and the bottom element (Coecke, 2002a).

28 Injective hulls are actually not universal in a strictly categorical sense. However, it is possible to give
a characterization of distributive hulls in terms of a so-called ‘frame completion’, which is a mono
reflection and as such strictly universal. See for example Harding (1999) and Stubbe (2001).
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where the explicit DI(L)-joins are given by
∨

DI(L)

: P(DI(L)) → DI(L) : A �→
⋂ {

B ∈ DI(L)
∣∣∣B ⊇

⋃
A

}
(26)

(meets are obviously intersections), and we will argue below that this hook is
implicative sensu “with respect to actuality,” i.e., in the sense that in the property
lattice

∧
was conjunctive and in the sense we defined disjunctivity when motivating

the use of distributive ideals. One verifies that we actually obtain29

(B →DI(L) C) = {a ∈ L|∀b ∈ B : a ∧ b ∈ C}. (27)

The true quantum features are (at this ‘static’ level) encoded in an operational
resolution

RDI(L) : DI(L) → DI(L) : A �→�( ∨
L

A
)

(28)

that recaptures statements expressing actuality of properties within the larger col-
lection of propositions on actuality of them, and that only for classical systems
becomes trivial, being the identity. The logical essence of this representation is
such that, rather than seeing the shift “from classical to quantum” as a weakening
of the property lattice structure from a distributive lattice to a non-distributive one,
we envision this transition as going from a trivial additional operation on the propo-
sitions (which as a consequence in the classical case coincide with the properties)
to a non-trivial one. Note that the non-distributive features are as such recaptured
as the range of this additional operation R , but they don’t affect distributivity of
the domain. Quantum logic becomes as such ordinary logic with an additional
operation, a bit in the sense of modal logic. From a pragmatic formal attitude, this
construction however seems to conflict with statements about the non-distributive
nature of quantum theory, what, for some authors is exactly the essence of quantum
logicality. In the quantum case, the non-distributivity does not come in within the
ordering of propositions, but as the range of the operation R which acts on the
propositions. Also the other axioms considered in axiomatic approaches, e.g., or-
thomodularity, have the same incarnation. We refer to Coecke (2002b) for a more
elaborated discussion on the significance/conceptions of non-distributivity in the
context of quantum theory.

Going back to the explicit construction of the Heyting hook for propositions
on properties, it as such also turns out that the canonical implication on a lattice

29 Note here that {a ∈ L|∀b ∈ B : a ∧ b ∈ C} indeed defines a member of DI(L). First, we have that
x ′ ≤ x implies x ′ ∧ b ≤ x ∧ b for x ∈ (B →DI(L) C) = {a ∈ L|∀b ∈ B : a ∧ b ∈ C} such that x ′ ∧
b ∈ C since C ∈ DI(L). Next, for X ⊆ (B →DI(L) C) with X a distributive set, i.e., ∀c ∈ L : c ∧∨

X = ∨{c ∧ x | x ∈ X}, one easily verifies that distributivity of X implies distributivity of {b ∧ x |
x ∈ X} and thus (

∨
X ) ∧ b = ∨{b ∧ x | x ∈ X} ∈ C so

∨
X ∈ (B →DI(L) C) .
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of properties is an external one that takes values in DI(L), namely

(− →L −) : L × L → DI(L) : (b, c) �→ {a ∈ L|a ∧ b ≤ c} (29)

obtained by domain and codomain restriction of (− →DI(L) −). If and only if L
is itself a complete Heyting algebra, then we can represent this external operation
faithfully as an internal one by setting (b → c) := ∨

(b →L c). In particular can
our external implication arrow be defined by

a ∧ b ≤ c ⇐⇒ a ∈ (b →L c), (30)

as such in a more explicit manner expressing that it generalizes the implication
that lives on a complete Heyting algebra where a ∈ (b →L c) then coincides with
a ≤ (b → c). Within DI(L) we see that (b →L c) is the set of properties whose
actuality makes the deduction “if b is actual then c is actual” true, i.e., given a ∈
(b →L c), then ∀p ∈ �a : (p |= b ⇒ p |= c) where �a := {p ∈ �|p |= a}. In
other words, (− →L −) transcribes in terms of actuality the minimal requirement
of any functional formal implication with respect to extensional quantification over
the state set. Note that by constructing (− →L −) via (slightly abusively) domain
restriction from DI(L) × DI(L) to L × L we exhibit clearly that (− →L −) can
(again) be made internal via a domain extension, and, that this extension has
physical significance and moreover preserves all the physically derivable logicality
of L . As a statement: “(− →L −) is the [closest you can get to] implication on the
lattice of properties.” In relation to the minimal implicative condition we obtain

L ∈ (a →L b) ⇐⇒ a ≤ b ⇐⇒ ∀p ∈ � : (p |= a ⇒ p |= b) (31)

for (− →L −) whereas for (− →DI (L) −) this ‘extends’ to

L = (A →DI(L) B) ⇐⇒ A ⊆ B ⇐⇒ ∀p ∈ � : (p |= A ⇒ p |= B). (32)

Note that →DI(L) as an operation, is the parameterized right adjoint with respect to
the respective meet actions {(A ∩ −)|A ∈ DI(L)}. The above leads to a semantical
interpretation of (− →DI(L) −) as p |= (A →DI(L) B) ⇐⇒ (p |= A ⇒ p |= B),
or, equivalently,

µ(A →DI(L) B) = {p ∈ �|p |= A ⇒ p |= B}, (33)

where, extending the usual Cartan map µ : L → P(�) : a �→ {p ∈ �|p ≺ a}, we
define µ(A) := ⋃

µ[A], the square brackets referring to pointwise application of
µ, i.e., in semantical terms, µ(A) = {p ∈ �|p |= A}. Note at this point that there
is indeed a duality in representing propositions in terms of DI(L) or in terms of
a particular subset F(�) of P(�) defined as F(�) := {µ(A)|A ∈ DI(L)}, which,
for atomistic L , turns out to be P(�) itself. In more syntactical terms, i.e. without
referring to the state space interpretation, adjointness allows us explicitly to restate
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(− →DI(L) −) as30

(A →DI(L) B) =
∨

DI(L)

{C ∈ DI(L) | ∀D � C : (D � A ⇒ D � B)} (34)

(A →DI(L) B) =
∨

DI(L)

{C ∈ DI(L) | ∀d ∈ C : (d ∈ A ⇒ d ∈ B)} (35)

(A →DI(L) B) = {c ∈ L | ∀d ≤ c : (d ∈ A ⇒ d ∈ B)}, (36)

for the latter, rather than explicitly showing that is indeed a distributive ideal
such that we can drop the corresponding closure, we can use eq. (27) and verify
straightforwardly that

∀a ∈ A : a ∧ c ∈ B ⇐⇒ ∀d ≤ c : (d ∈ A ⇒ d ∈ B). (37)

As such, for properties we obtain, syntactically,

(a →L b) = {c ∈ L | ∀d � c : (d � a ⇒ d � b)}. (38)

How does the Sasaki hook relate to this implication? Since ϕ∗
a (b) = a ∧ (b ∨ a′) ≥

a ∧ b and thus ϕ∗
−(−) ≥ (− ∧ −) pointwisely—recall here that (− L→ −) arises as

domain restriction of the right adjoint of the action of the DI(L)-meets, the latter
encoding for properties the L-meet in terms of intersection of principal ideals. For
the corresponding adjoints of the actions we have a ∧ (a

S→ b) = a ∧ (a′ ∨ (b ∧
a)) = ϕ∗

a (b ∧ a) = b ∧ a ≤ b and thus (a
S→ b) ∈ {c ∈ L|a ∧ c ≤ b} = (a→Lb),

or, differently put, ↓ (− S→ −) ≤ (−→L−) pointwisely. In terms of actions this
gives us for the corresponding adjoint pairs (a ∧ −) � (a→L−) — with slight
abuse of notation, see eq.(30)—and ϕ∗

a (−) � (a
S→ −)

(a→L−) ≥ ↓ (a
S→ −) and (a ∧ −) ≤ ϕ∗

a (−), (39)

expressing reversal of pointwise order by adjunction. Thus, from a semantical per-
spective, ↓ (− S→ −) : L × L → DI(L) is a restriction of the (static) implication
(− →L −). So, if the Sasaki adjunction doesn’t encode a ‘real’ implication, what
does it do? This will be explained in the next section.

5. THE SASAKI ADJUNCTION INCARNATES CAUSAL DUALITY

Causal duality has been derived in Coecke et al. (2001) inspired on derivations
in Faure et al. (1995). Rather than giving a full derivation, we sketch a more intuitive
way of looking at the obtained results. Assume (so we don’t give a full proof here)

30 Since A ⊆ B ⇐⇒ ∀a ∈ A : a ∈ B ⇐⇒ ∀p |= A : p |= B ⇐⇒ (∀p)(p |= A ⇒ p |= B), due
to the equivalence induced by eq. (6), we have C ⊆ (A →DI(L) B) ⇐⇒ (C ∩ A) ⊆ B ⇐⇒
(∀p)(p |= C ∩ A ⇒ p |= B) ⇐⇒ (∀p)(p |= C, p |= A ⇒ p |= B) ⇐⇒ ∀p |= C : (p |= A ⇒
p |= B),where again eq. (6) allows expressing this in terms of D � C rather than p |= C .
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for a system placed in an environment e, e.g., an environment ea sensu Section
2,31 during a time interval [t1, t2] (which can be envisioned as being infinitesimal)
that there exist the maps:32

i. ‘Propagation of properties’ e∗ : L1 → L2 that assigns to any property a1 ∈
L1 the strongest property e∗(a1) ∈ L2 of which actuality is implied at time
t2 due to actuality of a1 at time t1;

ii. ‘Causal assignment of properties’ e∗ : L2 → L1 that assigns to any prop-
erty a2 ∈ L2 the weakest property e∗(a2) ∈ L1 whose actuality at time t1
guarantees actuality of a2 at time t2.

Since, given a2 ∈ L2, e∗(a2) ∈ L1 guarantees actuality of a2 at time t2, e∗(a2)
has to propagate to a property that is stronger (or equal) than a2 and as such
e∗(e∗(a2)) ≤ a2. Analogously, given a1 ∈ L1 , since it propagates into e∗(a1), ac-
tuality of a1 at t1 guarantees actuality of e∗(a1) at t2 and as such a1 ≤ e∗(e∗(a1)).
Thus, from e∗(e∗(a2)) ≤ a2 and a1 ≤ e∗(e∗(a1)) we obtain e∗ � e∗, and this adjunc-
tion is what we refer to as causal duality. The generality of the principle lies in the
fact that besides applying to temporal processes it also applies to compoundness
(Coecke, 2000).33

We started the first paragraph of the previous section with a discussion on (di-
chotomic) perfect quantum measurements with the aim to exhibit the emergence
of disjunction. In view of Section 2 we can denote the corresponding environment
that provokes such a measurement, i.e., the presence of the corresponding mea-
suring device, as ϕ{a,a′}. In the following paragraphs, we then additionally argued
that the disjunctive extension has the extra advantage that it allows us to encode
an external implicative hook on L × L which then extends to an internal impli-
cation on the whole of DI(L) × DI(L). Thus, the use of the disjunctive extension
for representing quantum systems goes beyond representing the emergent disjunc-
tion in the sense that it has also a pure logical motivation in terms of envisioning
(static) quantum logicality as ordinary logicality with the additional presence of a
non-trivial operational resolution R : DI(L) → DI(L). For the particular case of
a perfect quantum measurement, we are going to restrict us now to the specific
example where we consider a transition only provided a certain positive outcome
is obtained, say a for simplicity, what actually means that whenever the system

31 And for simplicity assumed to be non-destructive.
32 The existence can be proved—see Coecke et al., (2001) and Faure et al., (1995).
33 We want to stress here that causal duality actuality allows us to prove things and is such is not

just a fancy way of writing things down. For a proof of linearity of Schrödinger flows, given that
the property lattice of the corresponding system is LH, see Faure et al. (1995). For a proof that
the tensor product of Hilbert spaces is appropriate to describe compoundness for systems with as
property lattice LH see Coecke (2000). Conclusively, if the space in which we describe the system is
linear, then causal duality forces temporal propagation and compoundness to be described by linear
maps. These results essentially use Faure and Frölicher (1993, 1994).
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is within environment ϕ{a,a′} we condition on the fact that a is obtained—note
however, not necessarily in a causal manner, i.e., a does not have to be actual
before the measurement. A concrete way to envision this specific situation is in
terms of a filter, that whenever the outcome corresponding to a is not obtained
the system will be destroyed.34 Let us denote the corresponding environment as
ϕa . Now, since the Sasaki projection ϕ∗

a : L (1) → L (2) with t2 = t1 + ε, encodes
the behavior of a system under a perfect quantum measurement ϕ{a,a′} when the
outcome corresponding to a is obtained, it encodes the propagation of proper-
ties with respect to ϕa (justifying the notation ϕ∗

a in perspective of the previous
paragraph) and should as such admit a left adjoint expressing (backward) causal
assignment, and this is exactly how (a

S→ −) = ϕa,∗(−) : L (2) → L (1) arises in
this setting. Sasaki adjunction constitutes as such an incarnation of causal duality.
This already ‘partly’ explains the title of this paper — a more compelling perspec-
tive will be discussed in the next section. In particular we will show how causal
duality extends to a dynamic logical setting. First we need to introduce causal re-
lations as a dynamic counterpart to the static ordering of properties in the property
lattice.

Along the lines of the heuristics behind eq. (3) we can introduce the following
two relations, whenever an environment e is specified, taking a t1-perspective:

e�⊆ L1 × L2 : a1
e� a2 ⇔ “actuality of a1 at t1 implies �-actuality of a2 at t2

′′;
(40)

e
�⊆ L1 × L2 : a1

e
� a2 ⇔ “�-actuality of a2 at t2 implies actuality of a1 at t1

′′.
(41)

Now, what do we mean by taking a t1-perspective, and, �-actuality? From the
perspective at time t1, i.e., before the interaction of the system and the environment
e takes place, there are two modes of envisioning actuality at time t2, namely i.
“a2 can be actual,” the uncertainty being due to the indeterministic nature of
the interaction of the system with the environment, and, ii. “a2 will be actual,”
definitely. Note that for deterministic transitions these two coincide. Motivated by
the modal logic symbolism, we can refer to these two alternatives respectively as
♦-actuality and �-actuality35 — whenever we mention ♦-actuality and �-actuality
we implicitly refer to a t1-perspective.36 In general, we clearly have for a fixed
property a2 at t2 that � − actuality =⇒ ♦−actuality. Formally, this gives us the

34 See also Piron (1976) on measurements as filters and see Smets (2001) for a recent survey.
35 For the use of modal-operators in static operational quantum logic, where the operators point out the

so-called ‘classical limit properties’ we refer to Coecke et al. (2001a) and Smets (2001, § 10). This
however should not be confused with the association to modalities made in this paper.

36 Note here that the notions ♦-actuality and �-actuality have only significance with respect to a
t1-perspective. In particular, referring to the two modes of envisioning actuality at time t2 in the
t1-perspective, in a t2-perspective there is only one since the interaction of the system with the
environment did take place.
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following (semantical) definitions for
e� and

e
� :

a1
e� a2 ⇐⇒ (∀p)1(p |= a1 ⇒ ẽ∗({p}) |= a2) (42)

a1
e
� a2 ⇐⇒ (∀p)1(p |= a1 ⇐ ẽ∗({p}) |= a2) (43)

where the index 1 in (∀p)1 refers to the fact that we quantify over states at time
t1, where ẽ∗({p}) denotes the states the system can have after interaction with the
environment e and where ẽ∗({p}) |= a2 stands for ∀q ∈ ẽ∗({p}) : q |= a2. More

explicitly referring to eq. (3) we see that as such the relations
e� and

e
� can

be defined in terms of the actuality relation. The major advantage of taking an
a priori t1-perspective is that it will allow us to introduce binary connectives that
extend this relation ‘with the same codomain,’ this extension is to be envisioned in
the sense that the relation ≤⊆ L × L has been extended to an implication—sensu
eq.(31) and (32)—namely (− →DI(L) −), provided that we considered the disjunc-
tive extension DI(L) of L and not just L itself. When asking the question whether
in some manner the relations

e� and
e
� indeed extend to connectives it will as

such be no surprise that we should again rather consider DI(Li ) than Li itself. By
‘with the same codomain,’ we mean that both will be represented in DI(Li )—note
here indeed that we do not require L1

∼= L2 and as such also not DI(L1) ∼= DI(L2).
(Obviously, all this requires to some extend a pluralistic attitude, we indeed ad-
mit that: One could for example find a motivation to consider a t2-perspective; this
then leads us to a bouquet of definable causal relations and corresponding dynamic
implications.) Note also that the necessity of having to consider the disjunctive
extension already follows from the following observation: given a specified refer-
ential frame, one could define an environment freeze (with obvious significance),
for which it clearly follows that (− freeze� −) ≡ (− ≤ −) ≡ (−freeze

� −), i.e., freeze
provides a static limit for the more general dynamic formalism that involves ex-
plicitation of the environment. As it can be seen in eq.(42) and (43), all these
considerations will involve introducing the notions of propagation of propositions
and causal assignment for propositions, or equivalently, in terms of the correspond-
ing sets of states that make a proposition true with respect to actuality of one of
its members, e.g., ẽ({p}). We will do this in the next paragraph. First we take a
look on how these relations are realized for the above discussed heuristics for the
Sasaki adjunction. Following Coecke et al. (2001), we obtain respectively by the

definitions of ϕ∗
a and

ϕa�, and, explicit expression of causal duality, that37

ϕ∗
a (a1) ≤ a2 ⇐⇒ a1

ϕa� a2 ⇐⇒ a1 ≤ ϕa,∗(a2), (44)

37 Indeed, ϕ∗
a (a1) ≤ a2 =⇒ a1

ϕa� a2 follows from the definition of ≤, and ϕ∗
a (a1) ≤ a2 ⇐= a1

ϕa� a2

follows from the fact that ϕ∗
a (a1) is the strongest property who’s actuality is implied by that of a1

and as such implies any other of that kind.
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from which it also follows that a1
ϕa� ϕ∗

a (a1), that ϕa,∗(a2)
ϕa� a2, and in particular,

using ϕ∗
a (1) = a, that 1

ϕa� a. By the second equivalence in eq. (44) we moreover
obtain

Corollary 5.1. b � (a
S→ c) ⇐⇒ b

ϕa� c.

The case of the backward relation is less straightforward (and in a sense
also less canonical). Indeed, both in the definitions of e∗ and e∗ we use a for-
wardly expressed condition in terms of “actuality at t1 guarantees actuality at
t2,” where the definition of

e
� points backwardly. However, we can quite eas-

ily prove a similar result as exposed in eq. (44). We first do this for a general
environment e.

Proposition 5.2. a1 ≥ e∗(a2) ⇐⇒ a1
e
�a2 and thus a1 ≥ ϕa,∗(a2) ⇐⇒ a1

ϕa�a2.

Proof: (⇐=) : From p |= e∗(a2), by definition of e∗(a2) as “guarantees actuality
of a2 at t2,” it follows that ẽ∗({p}) |= a2, so by a1

e
� a2 we then obtain p |= a1

and thus a1 ≥ e∗(a2). (=⇒) : We will first prove that e∗(a2)
e
� a2, i.e., (∀p)1(p |=

e∗(a2) ⇐ ẽ∗({p}) |= a2). Once this is done, a1
e
� a2 given that a1 ≥ e∗(a2) now

follows straightforwardly. Since e∗(a2) is the weakest property that guarantees
actuality of a2 at t2 we clearly have p |= e∗(a2) for all states p at t1 that guarantee
actuality of a2, i.e., ẽ∗({p}) |= a2, so we do have e∗(a2)

e
� a2, what completes this

proof. �

Corollary 5.2. (a
S→ c) � b ⇐⇒ b

ϕa� c.

Corollary 5.3. b = (a
S→ c) ⇐⇒ b

ϕa� c & b
ϕa� c.

Note that as a part of the proof of Proposition 3, we obtained e∗(a2)
e
� a2,

and that by Proposition 3 itself we obtain an alternative way of defining causal
assignment e∗, namely as:

ii′. ‘Causal assignment of properties’ e∗ : L2 → L1 that assigns to any prop-
erty a2 ∈ L2 the strongest property e∗(a2) ∈ L1 whose actuality is implied
by �-actuality of a2 at time t2.

This alternative definition clearly exhibits in a more manifest way the back-
wardness of causal assignment, and consequently, of the action of the Sasaki hook.
One easily verifies that contra eq. (44) for the case of

e� there is no obvious expres-

sion of
e
� in terms of e∗. The naive idea one could have to propose e∗(a1) ≥ a2
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breaks down on the fact that this would imply e∗ � e∗ what forces e∗ and e∗ to
be mutually inverse, something that in general (obviously) does not hold. We will
now proceed by ‘extending’ the relations

ϕa� and
ϕa� to operations.

6. THE SASAKI HOOK WITHIN DYNAMIC
OPERATIONAL QUANTUM LOGIC

First note that for general environments e the relations
e�⊆ L1 × L2 ande

� ⊆ L1 × L2 easily extend to DI(L1) × DI(L2) by replacing “(�-)actuality of
. . .” by “truth with respect to (�-)actuality of a member of . . .,” explicitly,

A1
e� A2 ⇐⇒ (∀p)1(p |= A1 ⇒ ẽ∗({p}) |= A2) (45)

A1
e
� A2 ⇐⇒ (∀p)1(p |= A1 ⇐ ẽ∗({p}) |= A2) (46)

where ẽ∗({p}) |= A2 now stands for ∀q ∈ ẽ∗({p}) : q |= A2, i.e. ∀q ∈ ẽ∗({p}), ∃a2

∈ A2 : q |= a2, and where one verifies that ↓ a1
e�↓ a2 ⇐⇒ a1

e� a2 and

↓ a1
e
�↓ a2 ⇐⇒ a1

e
� a2. Thus we can write elements of the image of R, i.e.,

those elements in DI(L) that represent properties, by the properties themselves. In
view of eq.(33), (45) and (46) it seems natural to set

µ(A1
e→ A2) := {p ∈ �1|p |= A1 ⇒ ẽ∗({p}) |= A2} (47)

µ(A1
e← A2) := {p ∈ �1|p |= A1 ⇐ ẽ∗({p}) |= A2} (48)

indeed yielding an extension of the relations since

A1
e� A2 ⇐⇒ (A1

e→ A2) = L and A1
e
� A2 ⇐⇒ (A1

e← A2) = L .

(49)
One verifies that on their turn (− e→ −) and (− e← −) respectively define two
tensors (− ⊗e −) and (− e⊗ −) via adjunction (Coecke, 2002b; Coecke et al.,
2001b; Smets, 2001), i.e.,

(A ⊗e −) � (A
e→ −) and (−e ⊗ A) � (− e← A). (50)

In order to understand the significance of these tensors, first observe that the
causal duality derived in the previous section for maps respectively expressing
propagation and causation for properties, can also be derived for maps express-
ing propagation and causation of the propositions in DI(L), or equivalently, ex-
pressing propagation and causation of sets of states in F(�). This actually cor-
responds to forgetting about the existence of R and applying the construction
towards causal duality as if DI(L) ∼= F(�) is the lattice of properties of a clas-
sical system. The existence of a right adjoint of the map ê∗ : DI(L1) → DI(L2)
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that assigns to A1 ∈ DI(L1) the strongest proposition in DI(L2) of which truth
(i.e., actuality of a member) is implied by that of A1, or equivalently, of the map
ẽ∗ : F(�1) → F(�2) that assigns to T1 ∈ F(�1) the collection in F(�2) of obtain-
able outcome states given that the initial state is in T1, then imply preservation
of respectively

∨
DI(L) and

⋃
, i.e., disjunction. Complementary, since existence

of a right adjoint for propagation of properties encodes preservation of joins for
properties, it follows from Coecke and Stubbe (1999) and Coecke (2002a) that∨

L A = ∨
L B =⇒ ∨

L ê∗(A) = ∨
L ê∗(B), or, expressed within DI(L),

RDI(L)(A) = RDI(L)(B) =⇒ RDI(L)(ê
∗(A)) = RDI(L)(ê

∗(B)). (51)

Thus, a shift “from classical to quantum” implies, besides the emergence of the
operation R, that classical “preservation of disjunction” becomes a pair consisting
of i. preservation of disjunction, and, ii. the continuity-like condition of eq. (51).
Thus, coexistence of laws on propagation at the level of L and DI(L) is not a
redundancy.38 One now verifies that

(L ⊗e −) = ê∗(−) and (Le⊗ −) = ê∗(−), (52)

from which follow preservation properties with respect to meet and join, addition-
ally to the ones that follow from the fact that the tensors encode the left-adjoint
actions to the hooks.39

How does all this apply to the context of quantum measurements, and as such,
how does the Sasaki adjunction fits in at this point. First note that we have

ϕ̂∗
a : DI(L1) → DI(L2) : B �→

∨
DI(L)

{↓ ϕ∗
a (b)|b ∈ B}; ↓ b �→↓ ϕ∗

a (b), (53)

i.e., ϕ∗
a and ϕ̂∗

a act in the same on properties due to the eliminated emergence of
disjunction in ϕa . Do we have the same correspondence for the action of ϕa,∗ and
ϕ̂a,∗?

Proposition 6.1. Given f ∗ � f∗ : L1 → L2 and f̂ ∗ � f̂∗ : DI(L1) → DI(L2),
then ↓ f ∗(−) = f̂ ∗(↓ −) on L1 implies ↓ f∗(−) = f̂∗(↓ −) on L2.

Proof: For a, b ∈ L : f̂ ∗(↓ b) ⊆↓ a ⇐⇒↓ f̂ ∗(b) ⊆↓ a ⇐⇒ f̂ ∗(b) ≤ a ⇐⇒
b ≤ f∗(a) so f̂ ∗(↓ a) = ∨

DI(L2){B ∈ DI(L2)| f̂ ∗(B) ⊆↓a} = ∨
DI(L2){↓ b|b ∈ L2,

b ≤ f∗(a)} = ∨
DI(L2){↓ f∗(a)} =↓ f∗(a). �

38 Note here that where L induced a closure on DI(L), we formally obtain in this case a restriction
on the corresponding hom-sets SL(DI(L1), DI(L2)) in SL, the category of complete lattices and
join-preserving maps. As shown in Coecke and Stubbe (1999), the physically admissible transi-
tions constitute a subset of SL(DI(L1), DI(L2)) for which there exists a ‘quantaloid morphism’
R : SL(DI(L1), DI(L2)) → SL(L1, L2).

39 It turns out that (− ⊗e −) and (− e ⊗ −) respectively provide DI(L) with the structure of a com-
mutative quantale and an in general non-commutative dual quantale (Coecke, 2002b; Coecke et al.,
2001b).
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Thus, ϕ̂a,∗ acts on properties as the Sasaki hook does, and it makes therefore
sense to set

(a
S→ −) := ϕ̂a,∗(−) : DI(L) → DI(L). (54)

What do we obtain in case for eq. (47) and (48) in particular for properties as
arguments? Setting cT := � \ T we obtain40

µ(a1
ϕa→ a2) = cµ(a1) ∪ µ(a

S→ a2) and

µ(a1
ϕa← a2) = cµ(a

S→ a2) ∪ µ(a1). (55)

Note here in particular that the Sasaki hook does appear in the expression of both
(a1

ϕa→ a2) and (a1
ϕa← a2), however with a different antecedent than (a1

ϕa→ a2) and
(a1

ϕa← a2). One verifies that using

(a1
ϕa→ a2) = (a1 →L ϕa,∗(a2)) and (a1

ϕa← a2) = (ϕa,∗(a2) →L a1), (56)

obtained via adjointness of ϕ∗
a and ϕa,∗ and Proposition 4, and eq. (29) and (30),

we obtain

(a1
ϕa→ a2) = {b ∈ L1|a1 ∧ b ≤ (a

S→ a2)} = (a1 →L (a
S→ a2))

and (a1
ϕa← a2) = {b ∈ L1|(a S→ a2) ∧ b ≤ a1} = ((a

S→ a2) →L a1)

(57)

i.e., respectively a forward and a backward dynamic ϕa-modification of the static
hook (− →L −). Similar equations can be obtained for arguments in DI(L1) ×
DI(L2). For the tensors we obtain

(A1 ⊗ϕa A2) = ϕ̂∗
a (A1 ∧DI(L) A2) and (A1 ϕa⊗A2)

= (A1 ∧DI(L) (a
S→ A2)). (58)

By construction we have the following modified versions of deduction and modus
ponens (we express them for properties in analogy to eq. (8) and (9), the significance
of the tensors is obvious):

b ⊗ϕa c � d ⇒ c � (b
ϕa→ d) b ⊗ϕa (b

ϕa→ c) � c b ϕa⊗c � d

⇒ b � (d
ϕa← c) (c

ϕa← b)ϕa
⊗ b � c. (59)

We give a global overview of where the Sasaki operations fit in within DOQL—

we introduced the notations ↓ [L] := {↓ a|a ∈ L}, (− S← a) := (a
S→ −) and

40 E.g., via µ(a1
ϕa→ a2) = {p ∈ �1 | p |= a1 ⇒ ϕ∗

a (p) |= a2} = {p ∈ �1 | p |= a1 ⇒ p |= ϕ∗,a(a2)}
= cµ(a1) ∪ µ(a

S→ a2).
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(− ←X ·) := (· →X −) for X ∈ {L , DI(L)}.41

Statical (freezed dynamical) ϕa -induced forward dynamical ϕa -induced backward dynamical

idL : L → L ϕ∗
a (−) : L1 → L2 ϕa,∗(−) = (− S← a) : L2 → L1

idDI(L) : DI(L) → DI(L) ϕ̂∗
a (−) =↓ ϕ∗

a (−)on ↓ [L1] ϕ̂a,∗(−) =↓ (− S← a) on ↓ [L2]

(− →L −) : L × L → DI(L) (− ϕa→ −) = (− →L (a
S→ −)) (− ϕa← −) = (− ←L (− S← a))

(− →DI(L) −) on DI(L) (− ϕa→ −) = (− →DI(L) (a
S→ −)) (− ϕa← −) = (− ←DI(L) (− S← a))

(− ∧DI(L) −) on DI(L) (− ⊗ϕa −) = ϕ̂∗
a (− ∧DI(L) −) (−ϕa⊗ −) = (− ∧DI(L) (− S← a))

Using eq. (56) we can actually formally recover the Sasaki hook and
projections as

(1
ϕa→ −) = (1 →L (a

S→ −)) = (a
S→ −)

(1 ⊗ϕa −) = ϕ∗
a (1 ∧ −) = ϕ∗

a (−). (60)

In the static case both of these become the identity, i.e., (1→L−) = (1 ∧ −) = idL ,
this giving the Sasaki hook and projectors a formal interpretation as dynamic mod-
ifications of the identity. Let us conclude this section with the following identities

((a
S→ b)

ϕa→ b) = L ((a
S→ b)

ϕa← b) = L (61)

or, differently put

(a
S→ b)

ϕa� b (a
S→ b)

ϕa� b (62)

what formally encodes our interpretation of what the Sasaki hook does.

7. QUANTUM LOGIC RESEARCH? HOW TO CONVERT?

As mentioned above, Coecke (2002a), the traditional domain of study of
quantum-like lattices should now be envisioned as a study of the range of the op-
eration R, with corresponding heuristics. This obviously sheds a different light on
the significance of, for example, orthomodularity. Weak modularity actually does
not come in at all in the disjunctive extension construction—we recall from Coecke
(2002a) that orthocomplementation comes in the sense that operational resolution
has an involutive square-root named the ‘operational complementation.’ However,
since orthomodularity is equivalent with the Sasaki adjunction and this Sasaki
adjunction in its turn represents causal duality, we have provided a new dynamic
interpretation of the axiom of orthomodularity. But, we can push this further. The

41 We note that there are some subtilities which we did not mention for sake of transparency of the
argument, in particular with respect to ϕ∗

a (b) = 0 where we have two options: i. introduce a kernel of
inadmissible initial states, i.e., consider ϕ̃∗

a : F(� \ K ) → F(�), or, consider upper pointed exten-
sions sensu (Coecke et al., 2001; Sourbron, 2001). Note that similar considerations can be made for
environments ϕ{a,a′} instead of ϕa though then we truly obtain two levels, one for ϕ∗

{a,a′} and ϕ{a,a′}∗
and one for ϕ̂∗

{a,a′} and ϕ̂{a,a′}∗ .
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essential conclusion that comes out of our analysis is that in traditional quan-
tum logic “too much was encoded in too little”: properties where identified with
propositions, temporal phenomena like ‘change of state in a measurement’ where
statically encoded, the distinction between the structure of properties and event
structures was in many occasions mixed up, etc. What about event structures? Since
we claimed that there was no conflict between an endo- and an exo-perspective,
where could they fit in in our setting? They clearly should lie at the base of struc-
turing the collection of environments.42 From a logical perspective, this implies a
two-dimensional situation: a structure of environments that interacts with a struc-
ture of propositions on a system. Of particular interest would then be the case
where we restrict to environments {ϕa|a ∈ L}, as we essentially did in this paper.
This would mean that the environments are structured in the same way as the image
of R, order-isomorphic to the properties L , so this realizes a structure in which
the lattice of closed subspaces of a Hilbert space appears both as the properties
and as labels encoding (physical) environments, where actually we rather think
about the latter as being the projectors in standard quantum theory. In that sense
the situation of “too much being encoded in too little” gets explicitly unraveled,
and motivates that it truly seems to make sense to distinguish between closed sub-
spaces and projectors at an abstract structural level although they are in bijective
correspondence, the first having an ontological connotation, the second an empir-
ical. This then leads to the perspective that the transition from either classical or
constructive/intuitionistic logic to quantum logic entails besides the introduction
of an additional unary connective operational resolution R : DI(L) → DI(L) the
shift from a binary connective implication to a ternary connective

(− −→ −) : DI(L) × R[DI(L)] × DI(L) → DI(L). (63)

where two of the arguments refer to qualities of the system and the third, the new
one, to an obtained outcome (in a measurement). A better way of putting things
would be

(− −→ −) : DI(L) × P(L) × DI(L) → DI(L). (64)

where P(L) are the projectors (on corresponding closed subspaces) what for gen-
eral orthomodular lattices ends up being the Baer ∗-semigroup of projectors in the
Foulis (1960) sense. In view of Piron’s (1964) theorem it then follows that this sit-
uation fully covers ‘pointless quantum theory’—sensu pointless topology in terms

42 Some very general attempts in this direction were initiated in Amira et al. (1998). We also mention
that in the Foulis–Randall perspective there are some recent attempts by Greechie and Gudder (2001)
to build so-called sequential effect algebras that provide a dynamic structure for discussing empirical
events. Along the lines of Section 2 one could say that sequential effect algebras aim at characterizing
the structure of consecutive measurements as a reflection of the system’s behavior there where the aim
in Amira et al. (1998) is essentially to obtain a theory on the system’s behavior itself, incorporating
the interaction with its environment possibly including a measurement setup.
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of locales, i.e., complete Heyting algebras—since we drop the two point-related
axioms atomisticity and covering law in order to have a (complete) orthomodu-
lar lattice. Another extrapolation of the setting presented in this paper consists of
rather than defining dynamic operations (labeled by environments) on the static
propositions DI(L), we start of from ‘dynamic propositions’, i.e., propositions on
‘propagation of (actual) properties’ rather than on actuality itself and here inspi-
ration can be found in research within the domain of for example computational
process semantics (Milner, 1999), action logic (Baltag, 1999), etc. Obviously,
much is still to be done in that direction.
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